
MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES
u | ir I Form Ap ro, e

REPORT DOCUMENTATION PAGE oU NO 0A0401.

21,3c - "I : "ec "f ,tc-,c -i~t ... 0 e, -o'se 'Mair t?'* te- 'r 0'e'"A #w ' ntre. .. rnn ir 141* vo~rc
, 1 pnec"' 1"a -I ! 9!e ata leea.. 1"d :Cn'a.0ting Jrnc I*..... q -..e IIcCti on D, -'"ilofl ',end cottnents Oga.ftg tn'oaa'l -41.to Dr Inv~ Af &soct or !ft%~IecCo , i* c -,.r lug9et0n1 %If '-auocq ' . '06r AJ n eia .ate's l e., rectorate for mto,.na!.on Ooe'.t,cns #no Reoi, 12 I, *"@(Oo

1. AGENCY USE ONLY (Leave 7lnk 2 REPORT DATE 3.wPR YEADDTSC~E
Mar 90 Technical

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Generalized Disjunctive Well-Founded Semantics for Logic
Programs DAAG29-85-K-0177

6. AUTHOR(S)

Chitta Baral, Jorge Lobo, Jack Minker I
7. PERFORMING ORGANIZATION NAME(S) AND DDRESS(ES) PRORMING ORGANIZATION

7. ERFRMNG RGNIZTIN NMES) NDELECT K REPORT NUMBER

NUniversity of Maryland FEB 28 199]
College Park, MD 20742 S B

_ __

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
-AGENCY REPORT NUMBER

U. S. Army Research Office
P. 0. Box 12211 ARO 22648.19-EL

S Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Generalized disjunctive well-founded semantics (GDWFS) is an extension of gen-
- eralized well-founded semantics (GWFS) of Baral, Lobo and Minker, to disjunctive

logic programs. We describe fixpoint, model theoretic and procedural semantics and
:) show their equivalence. The fixpoint semantics is similar to the fixpoint semantics

of GWFS, except that it iterates over states (a pair of sets; one a set of disjunc-
* tions of atoms and the other a pair of conjunctions of atoms), rather than partial

interpretations. The model theoretic semantics is based on a dynamic stratification
of the program. The procedural semantics is based on SLIS refutations, +trees and

-* SLISNF trees. We compare the GDWFS with the strong well-founded semantics of
Ross and the stationary model semantics of Przymusinski.

14. SUBJECT TERMS 1S. NUMBER OF PAGES

16. PRICE COO

17. SECURITY CLASSIFICATION 16. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE O ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 28 (Rev 2-69)
Pv,,crtbd by ANItd Std, ZWIS

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

91 2 19 008

UMIACS-TR-90-39 March 1990
CS-TR -2436

Generalized Disjunctive Well-founded
Semantics for Logic Programs

Chitta Baral1 , Jorge Lobo1 , and Jack Minker ' 2

Institute for Advanced Computer Studies2

and
Department of C nmputer Science1

University of Maryland
College Park, MD 20742

Abstract

Generalized disjunctive well-founded semantics (GDWFS) is an extension of gen-
eralized well-founded semantics (GWFS) of Baral, Lobo and Minker, to disjunctive
logic programs. We describe fixpoint, model theoretic and procedural semantics and
show their equivalence. The fixpoint semantics is similar to the fixpoint semantics
of GWFS, except that it iterates over states (a pair of sets; one a set of disjunc-
tions of atoms and the other a pair of conjunctions of atoms), rather than partial
interpretations. The model theoretic semantics is based on a dynamic stratification
of the program. The procedural semantics is based on SLIS refutations, +trees and
SLISNF trees. We compare the GDWFS with the strong well-founded semantics of
Ross and the stationary model semantics of Przymusinski.

1 Introduction and Motivation

Disjunctive logic programs are natural extensions of Horn logic programs to represent dis-

junctive and indefinite information elegantly. For example if we know that Fred is either

a bird or a mammal, and both mammals and birds are living beings, then we should be

able to conclude that Fred is a living being. If there is no reason for us to prefer be-

tween the possibilities of Fred being a bird or a mammal we can not represent this infor-

mation as a general Horn program consisting of clauses bird(Fred) +- -mammal(Fred) or

mammal(Fred) +- -bird(Fred). Hence a natural way is to represent this information as

the disjunctive clause bird(Fred) V mammal(Fred).

General disjunctive programs allow negation in their bodies. Formally, a general disjunc-

tive logic program is a set of clauses of the form A1 v... v A,, +- L, A .. A Lm, where the A's

are atoms and the L's are literals. Various semantics for general Horn logic programs have

been suggested that can handle general logic programs that are not stratified. Van Gelder

et al. [VRS88] introduced well-founded semantics for general Horn logic programs and Przy-

musinski [Prz89b] presented well-founded semantics for general Horn logic programs in terms

of a three-valued logic. Gelfond and Lifschitz [GL88] described stable model semantics for

general Horn logic programs. Baral, Lobo and Minker [BLM89 developed the generalized

well-founded semantics for general Horn logic programs.

For disjunctive logic programs, Ross [Ros] developed the strong well-founded semantics

and Przymusinski [Prz] developed the stationary model semantics. In this paper we develop

the generalized disjunctive well-founded semantics for logic programs and compare it with

the approaches by Ross and Przymusinski.

The ideas underlying the generalized disjunctive well-founded semantics can be motivated

by the following example. Let P be the logic program:

a -- -1b, c, d

b - a
t 'a

C 4-" [3
0

d+-- -c

If we consider all minimal models of the program P: {c,a}, {c,b}, {d,a} and {d,b}, the

conjunction c A d can be seen to be false in every minimal model, even though both c and Y
.ty 066

2 Avail and/or

Dist Speoil
Ok

X ~

d are not individually false (or even true) in all minimal models of P. Because of this it is

reasonable to assume the conjunction of c and d, c A d, to be false. This makes the body

of the only rule with a in its head false. Therefore, it is also reasonable to assume a to be

false and consequently b to be true. In [BLM89], we developed the generalized well-founded

semantics for general Horn programs which assigns the truth value undefined to b and to

a. Although the generalized well-founded semantics extended the well-founded semantics

we are not able to capture the above meaning, because there, we use partial interpretations

to assign truth values. A partial interpretation I is a pair < T, F > where T is the set of

atoms assumed to be true and F is the set of atoms assumed to be false. We were not able

to capture the falsity of conjunctions like c A d using only I. In this paper instead of using a

partial interpretation I, we use the concept of a state S, which is a pair < T', F' >, where T'

is a set of positive clauses and F' is a set of conjunctions of atoms, to extend the generalized

well-founded semantics to disjunctive programs. The generalized disjunctive well-founded

semantics for logic programs that we present handles both disjunctive programs and captures

the above aspects when restricted to general Horn logic programs.

2 Definitions

A general logic program is a finite set of clauses of the form

A1 V ... V A, +- L, A ... A Lm

where n > 1, m > 0, the As are atoms and the Ls are literals (i.,:. positive or negated

atoms). A general Horn clause is a clause where n = 1. A general Horn program or a

normal program is a general logic program that consists of general Horn clauses. A general

indefinite or general disjunctive clause is one where n > 2. A general logic program is called

general disjunctive if it contains a general disjunctive clause. We use the term program to

refer to both logic programs and general logic programs.

The Herbrand Universe Up of a program P, is the set of all ground terms that can be

P" formed from the constants and function symbols in P (if there are no constants in P an
! ,

arbitrary constant is placed in Up). The Herbrand Base of a logic program P, HB(P), is

defined as the set of all ground atoms that can be formed by using predicate symbols from P

with terms from the Herbrand Universe Up as arguments [Llo84]. A Herbrand interpretation

3

I for P is a subset of the Herbrand Base of P, in which all atoms in I are assumed to be

true while those not in I are assumed to be false. An Herbrand model of P is a Herbrand

interpretation of P that makes all clauses in P true. A model M is a minimal model of a

program P iff M is a model of P and no proper subset of M is a model of P.

3 Semantics for Disjunctive Logic Programs

In contrast to Horn programs, information that can be derived from disjunctive programs

might not be atomic. Consider the disjunctive program {A V B +- C, C1. From this

program we can deduce C and A V B, but we are not able to derive either A or B. As a

consequence, any semantics that we intend to develop for disjunctive programs must handle

indefinite information. Minker and Rajasekar [MR90] developed a declarative semantics for

disjunctive programs P, based on the extended Herbrand base of the program, EHB(P),

the set of all positive clauses that can be formed using distinct atoms form the Herbrand

base HB(P). The semantics is described as the least fixpoint of the following operator:

Definition 3.1 [MR90] (Operator Tt)

Let S be a subset of EHB(P), then

TI(S) = { C E EHB(P) I C' +- B 1,..., Bn is a ground instance of a clause in P and

Vi, 1 < i < n, Bi V Ci E S, where Ci can be null, and

C" = C' V C1 V ... V C,, ar I C is the smallest factor of C" }. C[

The smallest factor of a ground clause C' is defined as the clause C such that C contains only

distinct atoms and C logically implies C' and C' logically implies C. TA is continuous and

the least fixpoint ifp(Tt) characterizes derivability from a disjunctive program P. Formally.

Theorem 1 [MR9O] Given a program P,

lfp(T') = {C I C derivable from P}. [I

In addition, Minker [Min82] described how to derive negative information using the Gen-

eralized Closed World Assumption (GCWA). A ground atom A is assumed false by the

GCWA if A is false in all minimal (Herbrand) models of P. Yahya and Henschen [YH85]

developed a natural extension of the GCWA where they allow "indefinite" negative infor-

mation to be deduced, i.e., we might assume that A A B is false (-,A V -'B is true) without

4

necessarily knowing that A or B is false. This kind of assumption will be necessary to de-

scribe the semantics of programs like the one given in the introduction. Roughly speaking,

this extension to the GCWA can be defined as follows: a conjunction of ground atoms can

be assumed to be false if the conjunction is false in all minimal (Herbrand) models of P. In

this paper we extend the semantics for general disjunctive programs described in [MR90] and

[RM88] to include the extended GCWA. For this, we characterize the meaning of a general

disjunctive program by a pair < T, F >, where T is a set of disjunctions of atoms and F is

a set of conjunctions of atoms. More formally:

Definition 3.2 For a general disjunctive program P, the Conjunctive Herbrand Base of P,

CHB(P), is the set of all conjunctions of atoms that can be formed using distinct elements

from the Herbrand base of P, HB(P).

Example 3.1 For the program P = {p(x) +- q(x); q(a) V p(a)}, the conjunctive Herbrand

base is: CHB(P) = {p(a), q(a), p(a) A q(a)}.

Definition 3.3 A state S is a pair < T, F >, where

1. T is a subset of EHB(P) such that if C E T then C' E T for all clauses C' subsumed

by C.

2. F is a subset of CHB(P) such that if C E F then C' E F for all clauses C' such that

-'C' is subsumed by -'C.

Example 3.2 The following pair, < T, F >, forms a state for the program P in Exam-

ple 3.1:

T = {p(a), p(a) V q(a)}.

F = {q(a), p(a) A q(a)}.

We call any element in EHB(P) a disjunct and any element in CHB(P) a conjunct. For a

set of formulas S, we denote -'S the set {-i : 0 E S}. A state S =< T, F > is consistent

if T U -F is consistent. The state in Example 3.2 is a consistent state. States will play the

role of partial interpretation in general disjunctive programs (see [BLM89]). We define the

truth value of a sentence with respect to a state S =< T, F > as follows:

5

1. If G C T then vals(G) = true.

2. If G E F then vals(G) = false.

3. vals(-G) = -vals(G).

4. If vals(G) = true and vals(H) = true then vals(G A H) = true.

5. If vals(G) = true or vals(H) = true then vals(G V H) = true.

6. For a formula G(x) with free variable x, vals(VxG(x)) = true if vals(G(t)) = true for

all term t in Up.

7. For a formula G(x) with free variable x, vals(VxG(x)) = false if vals(G(t)) = false for

some term t in Up.

8. For a formula G(x) with free variable x, vals(3xG(x)) = false if vals(G(t)) = false for

all term t in Up.

9. For a formula G(x) with free variable x, va1s(3xG(x)) = true if vals(G(ti) V ... V

G(t,,)) = true for some finite subset {t 1 ,... ,t,,} of terms in Up.

10. For any other sentence G, vals(G) = undefined.

We also define - true = false, - false = true and -' undefined = undefined. In the remainder

of this paper we write t for true, f for false and u for unknown. We extend the operators

T and F' defined in [BLM89] to handle general disjunctive programs. As defined formally,

below, the operator TS assigns to every set T of disjuncts a new set TSD(T) of disjuncts and

the operator F.D assigns to every set F of conjuncts a new set YD(F) of conjuncts. The
superscript Din, TD and F' denotes that we are dealing with Disjunctive logic programs.

Intuitively, TD(T) contains new positive disjunctive facts (i.e disjuncts not contained in S),

whose truth can be derived in one step from the program P assuming that all facts in S hold

and all disjuncts in T are true. FsD(F) contains new conjunctions of atoms (i.e. conjuncts

not contained in S), whose falsity can be derived in one step from the program P assuming

that formulas in S are true and all conjuncts in F are false.

6

Definition 3.4 Let S =< Ts, Fs > be a state, P be a general disjunctive program, T be a

subset of EHB(P) and F be a subset of CHB(P). Let the Bs and A be ground atoms, the

Cs and E be disjuncts and G be a conjunct in the following formulas:

T59(T) = { C E EHB(P) : vals(C) # t, vals(C) # f and3C' +- Bi, ,Bm,-Bm+ ,-Bn

in P and a ground substitution 0 such that for all i, 1 < i < m, (Bi V Ci)O E Ts

or (Bi V Ci)O E T, CiO might be null, {Bm+i,'" ,Bn} g Fs and the smallest factor of

(C' V C, V ... V Cm)O subsumes C. }

.Fs(F) = { G E CHB(P) : vals(G) f, vals(G) 7 t and for all ground instances of

rules .4 V E +- BI, -', Bn, -B,,+, , -B,, in P, -,A subsumes -G and at least one of the

following four cases holds:

1. Bm+i V...VBn ETs.

2. BiAA...A Bm E Fs.

. BiA ... ABm E F.

4. E ETs. } 0

The operator T"s is similar to the operator TS defined by Minker and Rajasekar for the

fixpoint semantics of disjunctive programs [MR901. For the operator FTD(F), we can assume

A (and all conjuncts that contain A) to be false if in all rules where A occurs in the head,

either the body is false with respect to S and F (by assumption, there is no way that we can

deduce a disjunction that contains A using this rule), or the disjunct E associated with A in

the head of the rule is true with respect to S (A can be assumed to be false by the GCWA).

3.1 The Direct Extension of Well-founded Semantics is Not Suf-
ficiently Expressive

For general Horn programs, well-founded semantics [VRS88, Prz89b] is given as a fixpoint of

an operator 1, defined as 1(I) = I U < Tj; F1 >, where I is a partial model and the definitions

of Tt and F are anlogous to Tso and FsD in the atomic case, i.e. given a partial interpretation

I and a program P, Tt and Ft are defined as iterations of the following operators:

T(T) = { A : valt(A) 7 t, valt(A) --A f and 3B - LI,. ,Lm in P, such that for all i,

7

1 < i < m, LiO is true in I or LiO E T, and A = BO for a ground substitution 0}.

.F,(F) = { A : vali(A) # f, val1(A) - t and for all rules of type B +- L1, , L1,, and ground

substitutions 0 where A = BO, at least one of the following two cases hold:

1. 3i : i < m and LiO is false in I.

2. 3i: i <m and LiO E F}.

Then,

T+= T1(TJ)

TJ = U,,, T:n

FJ°= HB(P)

F, = nf<,, F1n.

A natural extension of the well-founded semantics to disjunctive programs might be defined

as a fixpoint of an operator SD defined by SD(S) = S U < TsD; FD > for any state S. where

TD and FS are defined as follows:

Definition 3.5
T 0

TS,"+ = 0r "
T+ = TD(T.)

FS°= CHB(P)

FD + l = FS n)
FsD= nn. S 0

Then, the well-founded state M D for a disjunctive program P would be defined as M 6 where:

MO = < 0,0>;

M,+i = SD(Ma), i.e. M.+1 = M, U < TMo;E, >

Mc. = ,< M#, for a limit ordinal a.

6 is the smallest countable ordinal such that M6 is a fixpoint of the operator S. In this case.

the operator S reduces to the operator " when applied to general Horn programs. However,

we will show through some examples that although S' and M D extend the semantics in

[RM88] by being able to capture the semantics of some unstratified disjunctive logic pro-

8

grams, the truth value of some formulas is undefined even though these formulas are false

using the GCWA.

First we give some examples whose intended meaning is captured by M D but is not

captured by the stratification theory presented in [RM88]. In the examples we introduce

two new notations. A set of disjuncts {Dl,..., D,,} delimited by 11i1 denotes the set of all

disjuncts D that are subsumed by some Di. A set of conjuncts {C1,... ,C,} delimited by

[] denotes the set of all conjuncts C that logically implies some conjunct Ci.

Example 3.3 For HB(P) = {a, b, c}:

Ila, bVcll= {a, aVb, aVc, bVc, aVbVc}. [a, bAc]= {a, aAb, aAc, bAc, aAbAc}.

Example 3.4 Consider the following program

a V b +- -,c, d

c +- -"a, -1b

Since this program is not stratified, its semantics is not captured in Minker and Rajasekar's

stratification theory [RM88]. For this program we now compute the well-founded model state,

as described above.

M, =< 0,0 > U < 0, [d] > = < 0, [d] > since there is no rule with d in its head.

F1 A [a, b, c, d], the conjunctive Herbrand base

F , = = [a, b, d], since the body of the rule with c in its head is true with respect

to the previous state
FD - F J2 _ F1 '

Mi. M1 -M,

M 2 =< 0,[d] > U < 0, [a, b] >=< 0, [a, b, d] >

M 3 =< 0,[a,b,d] > U <11 c 11,0 >=< 11 c II, [a,b,d] >
MD = M 3 . 0

Example 3.5 Consider the following disjunctive program without negation in the body of

its rules.
aVb

cVpV b

p*-a

p4-b

9

We show that the direct extension of the well-founded semantics captures the GCWA for this

program.

MO =< 0,0 >

M =<11 a V b,p 11,0 >
F1° = [a, b, C, P]

Ftl= [c, p]

F 2 =[cl

F D
3 - F 1 2

M2 =<11 a V b,p I, [c] >
MP= M3

The results obtained by Minker and Rajasekar [MR9O] capture the same semantics since the

program is disjunctive and does not contain negated atoms in the body of any clause.

Example 3.6 Consider the following general Horn program:

p - -'a, -1b, -,c

a -b

b +_ -- a

C n-d

d -- 'c
The well-founded semantics of Van Gelder, Ross & Schilf [VRS88] assigns to the above

program the partial model < 0, 0 >. Well-founded semantics [Prz89b] assumes that -'a A -,b

is unknown. Hence it is not able to infer that p is false. The generalized disjunctive well-

founded semantics of the program is <11 a V b, c V d I), [ab, cd, p] >. Hnce, p is inferred to

be false in the generalized disjunctive well-founded semantics. 0

The above example shows the extension of our semantics over well-founded semantics for

general Horn programs. However, as the following example shows, it does not capture the

GCWA for some disjunctive programs.

Example 3.7 Consider the following disjunctive logic program

p4- q,t

qVt

10

M =< 0,0>

FM1o = [p, q, t], the conjunctive Herbrand base of the program.

= [p], since the body of the rules with q and t in the head are vacuously true, and the

disjuncts that are present with q and t in the head of the rules are not true with respect to

F = 0, since the positive literals in the body of the rules with p in the head do not belong

to F"o
1 ,1vo = F, o - FMI

M1 =<(qVt),0>

Mp = M2 = M 1

In this example even though p is false by the GCWA [Min82, MR90], the generalized well-

founded semantics is not able to capture it. 0

To capture the natural semantics of programs of the type given in Example 3.7, while also

handling the semantics of Example 3.5, we need a function similar to I [BLM89] with two

components. One of the components will be < Ts4; Fs' > and the other will be an extension

of < Tf; Ff > to disjunctions and conjunctions. The definitions of TIE and FIE are based on

-t transformation of a general Horn program P to a positive disjunctive program Dis(P, I).

This transformation is obtained by removing false clauses in P with respect to I and moving

negative literals in the body of each clause in P to its head. Then Tf and Ff are defined

as follows:

T, = 1A: A is an atom and A E TAis(pt) T w and A * I.},

FI = {A: A E GCWA(Dis(P,I)) and A I}.

Tt~i,(p,) is the operator described in Definition 3.1. A precise description of the transforma-

tion Dis(P, I) for general disjunctive programs and the extended definition of If and Ff

are given in the next section. In this new definition, we use the extension of Minker's GCWA

by Yahya and Henschen [YH851 to be able to infer the falsity of conjuncts. We call this ex-

tension the Generalized Closed World Assumption for Conjuncts (GCWAC). This semantics

is a direct extension of the generalized well-founded semantics for general Horn programs

[BLM89] to general disjunctive programs. We therefore call it the generalized disjunctive

well-founded semantics for general disjunctive programs.

II

3.2 Generalized Disjunctive Well-Founded Semantics

We give two definitions for the GCWAC. The first, a syntactic definition based on proof

theory. The second, a semantic definition based on model theory. The proof of equivalence

can be found in [YH851.

Definition 3.6 (Syntactic)[YH85]

Let P be a disjunctive logic program and C, A ... A C, a ground conjunct. Then, C A. .. A Cr

can be inferred to be false from P iff VK,.-, K, (P F- C, V K,'..-, P I- CV K, =, P .-

KIv,"'-,VKr). GCWAC(P) is the set of conjuncts that can be assumed false from the

program using the GCWA C. C

Definition 3.7 (Semantic)[YH85]

Let P be a disjunctive logic program and C1 A ... A C, be a ground conjunct.

Then, CIA ... A Cr can be inferred to be false from P iff C1 A. A C, is false in every minimal

model of P. 0

Although the GCWAC extends the information given by the GCWA the complexity of com-

puting the GCWAC reduces to the computation of the GCWA as the following lemma shows.

Lemma 1 (Relation between GCWA and GCWAC)

Let P be a disjunctive logic program, C. be a new ground atom not in HB(P), and C1 A- ..ACr

be a ground conjunct, then

C, A ... ACr E GCWAC(P) iff C. E GCWA(PU {C. - C1 A ... A Cr}).

Proof:

C1 A ." A Cr E GCWAC(P)

iff C, A ... A Cr is false in all minimal models of P

iff for every minimal model M of P there exists i, 1 < i < r such that Ci is false in M

iff C. is false in every minimal model of P

iff C. is false in every minimal model of P U {C. +- C, A ... A Cr)

iff C. E GCWA(P U {C. +- C A" .AC,}). 0

There are two properties of the GCWAC presented in [YH85] that we use later in the paper.

12

Theorem 2 (Maximal Consistency)[YH85]

Given a program P, PU -'GCWAC(P) is maximally consistent in the following sense:

every conjunct C that can be assumed false without it being possible to derive a positive or

empty clause not derivable from P belongs to GCWAC(P). 0

Theorem 3 [YH85]

A Herbrand interpretation M is a minimal model of P if and only if M is a model of

P U -,GCWAC(P). 0

Let S be a state and T °D and FsD be as defined in the previous subsection. Intuitively, T °D

and FsD have the following meaning: T°D is the set of new positive ground clauses that can

be derived from program P starting with S. Fs4 is the set of new atomic conjuncts that can

be assumed false about P starting with S.

We now define the operators TsED, FSED and S' V , where the superscript ED means we are

Extending the well-founded semantics, and we are dealing with Disjunctive logic programs.

Definition 3.8 Let P be a general disjunctive program and S be a state. DIS(P) is a dis-

junctive program obtained by transferring all negative literals in the body of clauses of P to

its head. The disjunctive transformation of the program P with respect to S, Dis(P, S), is a

disjunctive program obtained from DIS(P) by reducing the clauses in DIS(P) as follows:

1. Remove atoms from the body of a clause if they are true in S.

2. Remove a clause if an atom or a disjunction in its head is true in S.

3. Remove the atoms in the head of a clause if they are false in S. 0

Definition 3.9 Let P be a program, S be a state and Dis(P,S) be the disjunctive transfor-

mation of P with respect to S. TsD and FiD are defined as follows.

Ts~o = {C : C E (Doi,(PS) T w) and C V S),

i.e. TSD is the set of disjuncts that can be derived from Dis(P,S) U S.

FE D = {C :CE GCWAC(Dis(P,S) US) andC S},

i.e. FED is the set of new ground conjuncts that can be assumed false about Dis(P,S) U S

by the GCWAC. 0

13

Definition 3.10 Let S"' be the operator that assigns to every state S of P a new state

S"' (S) defined by:

SED(S) = SU < TsD; F D > U < TsED; FsD >.

Corollary 3.1 Given a state S, then S C SeD1(S).

Proof: Directly from the definition of S'. 0

Definition 3.11 Let Mo = < 0, 0 >;

M,.+i = SkD (M.),

i.e. M,+ = M U < TD ; FD > U < TMD; F MD >;

M, = U#<,, Mg, for limit ordinal a. 0

Since the sequence {M} of states is monotonically increasing there exists a smallest

countable ordinal b such that M6 is a fixpoint, not necesarelly a least fixpoint, of the operator

S. We call this fixpoint MED.

We shall show in Corollary 3.3 that this fixpoint is consistent. That is, the union of the

positive clauses and the negation of the conjuncts has a model. We now consider Example 3.7

in light of this extension to the well-founded semantics for disjunctive programs.

Example 3.8 The program we considered in Example 3.7 is:

p +- q,t

qVt

M0 =< 0,0 >
TDo =11 q vtll
T20 =j~v I

Dis(P, Mo) has the clauses {p -- q, t ; q V t }.

TM,=1 q V t 11
E D = [p, q A t], as p and q A t both are false in all minimal models of Dis(P, Mo).

M, =< 0; 0 > U <l1 q Vt 1, 0> U <l1 q Vt 11, [p] > = <11 q V t II, [p] >
M1 is the fixpoint, and it includes the semantics of the GCWA. 0

14

We now give another example which combines both the well-founded aspects and the

GCWA.

Example 3.9 Consider the following program

p t,q

q +- ",a

aVb

e +1-fp

f -le

First we compute the fixpoint using the direct extension of the well-founded semantics for

disjunctive logic programs presented in Section 3.1.
Mo =< 0,0 >

We know M + = M U < T ; F D>;

T D= a V bII

Fl= [a, b, p, q, t, e, fl, the Conjunctive Herbrand base

Fo= [p, e], since for all rules with p and e in their head the body is false with respect to

Flo and this is not the case for all rules with other atoms in their head.

2 = [e], since for all rules with e in the head the body is false with respect to F".

F 13 = 0, since for the rule with e in the head the body is no longer false with respect to F o.

Fk D F 4 -F 1 3 0
Mo MO = M 0

M =< 0, 0 > U <11 a V b , 0> = <11 a V b >I, 0>
MD = MI

Hence the semantics assigns unknown to all atoms, except that it assigns true to the disjunct

a V b. We now compute the fixpoint using the generalized disjunctive well-founded semantics.
Mo < @;0 >

T D= a VbII

Dis(P,Mo) has the clauses {p - t,q; qVa; tV b; aVb; eVf}.

TMo=1 q V a,t V b,a V b,e V f 11.

o= [p,qAt,aAb,qAa,tAb,eAf].

15

M, =< 0;0 > U <Il aVb 11,0 > U <11 qVa, tVb, aVb,eVf II, [p,qAt, aAb, qAa, tAb,eAf] >
= <11 qV a, qVb, aVb, eVf II,[p,q At, a A, q A a, t A b, e A f] >
TMDJ = 0

FD, = [e)

Dis(P, MI) has the clauses {p +- t, q; q V a; t V b; a V b; e V f}.

M2 =<lqVa,tVb,aVb,eVf ll,[p,qAt,aAb,qAa,tAb,eAf] > U <0;[e] > U < >

= <11 qVa,tVb,aVb,eVf ll,[p,qAt,e,aAb,qAa,tAb,eAf] >

Similarly, M3 =<I1 qVa,tVb,aVb,eVf II,[p,qAt,e,aAb,qAa,tAb,eAf] > U < (f);O >

U < 0;0>

= <11 qV a,qV b,a V b,f II,[p,qAt,e,aA b,qAa,t Ab,eA f] >

A M3 is the fixpoint. 0

3.3 Model Theoretic Semantics

In this section we study the relationship between the models of a program P and ME D. In

the same spirit as the priority relation defined by Przymusinski [Prz89b] for well-founded

models we establish a priority relation between the minimal models of a general disjunctive

program P. These priorities are defined in term of a stratification of the Herbrand base

of P based on the syntactic structure of the program. The main result of this section is

that the "perfect" models with respect to this relation are precisely the models of M E D (see

[Prz89b]).

Definition 3.12 Let P be a general disjunctive program and b be the smallest (countable)

ordinal such that M6 is the fixpoint of sED (see Definition 3.10). The dynamic stratification

of the Herbrand based of P, HB(P), is a partition of HB(P) defined as follows:

S, = {A E HB(P) : A E T UFD UTMD UFM, fora

S6+ 1 = HB(P)- US..
C1<6

We define S to be the set HB(P) - U S and S, to be the set Uo<, So, for a < 6 + 1. 0

16

This stratification induces a priority relation -4 between the atoms of the Herbrand base of

a program P. We say that an atom B has higher priority than an atom A (A -< B) if A is

in a lower stratum than B, (i.e. (A -< B) iff A E S,, B E S and a < /). Even though we

follow a different approach than that given in [Prz89b] to define the priority relation among

atoms in the HB(P), this relation can be defined in terms of the dependency graph of the

program P as in the well-founded semantics.

Next, we show how, using the priority relation, we can describe the generalized well-

founded semantics by the prefect model sematics of Przymusinski [PP88, Prz88c]. First, we

define the preference relation between models of P.

Definition 3.13 Preference Relation /Prz88c]

Let M and N be two distinct models. We say N < M (N is preferable to M) if, VA (a ground

atom) in N-M, 3 a ground atom in B in M-N, such that A -< B. We refer to the relation <

as the generalized well-founded relation. 0

Example 3.10 Consider the program P in Example 3.4. The dynamic stratification of

HB(P) = {a,b,c,d} is: S, = {d}, S2 = {a,b} and S3 = {c}. The minimal models of P are

{a}, {b} and {c}. By the priority relation, {c} < {a} and {c} < {b}. Therefore, the prefect

model of P is {c}. 0

It is not always the case that the preferred model of the ralation < is unique. Consider the

program in Example 3.8. The minimal models are {q} and {t}. The dynamic stratification

has only one stratum S = {q, t, p}. Therefore, both models {q} and {t} are perfect models.

We want to characterize the semantics of a general disnjunctive program P through the

minimal elements of the preference realtion <. We define Minset(P) to be the set of

minimal elements with respect to the generalized well-founded relation <. An element in

Minset(P) is called a generalized well-founded model of P. A formula F is true (resp. false)

with respect to the generalized well-founded models iff F is true (resp. false) in all the models

in Minset(P). Now, we have two structures to describe the semantics of a general disjunctive

program P: the state MPED and the generalized well-founded models in Minset(P). The

following definition allows us to transform sets of models into states and vice-versa.

17

Definition 3.14 THREE(S)

Let P be a program a -d S be a set of interpretations (models) for P. We define the state of

P with respect to S, represented as THREE(S), as a pair < T', F' >, where

T'= {C E EHB(P): VM E S (M IC)}.

F' = {C E CHB(P): VM E S (M= -,C)}.

THREE(MINSET(P,i)) = < T', F >. 0

Example 3.11 From Example 3.8 we have:

THREE({{q},{t}})=< {qVt, qVtVp},{p, pAq, pAqAt} >

Next, we prove that MED = THREE(Minset(P)) by induction on the strata of P. We first

extend the definition of Minset to each stratum a in P.

Definition 3.15 MINSET(P,a)

Let P be a program and MM(P) be the set of minimal models of P. MJNSET(P,a) is a set

of minimal models of P defined by:

1. VM(M E MM(P) =- 3N(N E MINSET(P,a) A N < M).

2. VM, N(M,N E MINSET(P,a),M N = M It N, N It M).

where the relation between the atoms A, B E HB(P) is defined by:

A - B iff A E S1 and B E Sm and I > m and m < a; where So'".Sb+j is the dynamic

stratification of the program P.

Minset(P) = MINSET(P,6 + 1), where M E = M 6. 0

A useful lemma that we need for the proofs is the following.

Lemma 2 a < /$ =* MINSET(P,/#) g MINSET(P,a)

Proof: Let M E MINSET(PO3) and assume M MINSET(Pa). By definition of

MINSET(P,a) there exists N E MINSET(P,a) such that N <, M, where <" is the

relation defined by stratum a. Therefore, VA E N - M 3B E M - N(A -<a B). Therefore,

VA E S, in N - M for any stratum l B E Sm in M - N for some stratum m < a, such

that I > m. Therefore, VA E S1 in N - M for any stratum I 3B E S.. in M - N for some

stratum m < /, such that 1 > m, since a </3. Then, N <0 M, where <3 is the relation

18

defined by stratum #. By definition of MINSET(P, /), there exists S E MM(P) such that

S < t, N and S E MINSET(P,). It is easy to show < is transitive. Hence, S < M,

S, M E MINSET(P, f), S # M, contradicting part 2 of Definition 3.15. 0

Theorem 4 MpED = THREE(Minset(P))

Proof: We prove this theorem by proving the following two lemmas:

1. Lemma 3: M g THREE(MINSET(P, c)).

2. Lemma 5: THREE(MINSET(P, a)) _ M.+.

0

Lemma 3 Given a general disjunctive program P and the sequences {M}=6.

M C THREE(MINSET(P, a)).

Proof: By induction, assume there is an ordinal 3 such that for all ordinals a, a < /,
M,, _ THREE(MINSET(P, a)). Let M,, =< Tc, Fa >. Assume first that / is a successor

ordinal a + 1. We have two cases:

(1) C E T.+i = T, U TM. u TM..

(1.a) Assume C E TM. = Ui<,,T . By induction on i, we prove that C is true in

THREE(MINSET(P, a + 1)). For i = 0, T?$ = f and there is nothing to prove. As-

sume now as induction hypothesis that for every disjunct D E TV ,for some i greater than

0, D is true in THREE(MINSET(P, a + 1)). Let C be in T"M'. Therefore, there exists a

clause C' +- B1,..., B,,, -Bm+,..., --B in P and a ground substitution 0 such that for all

j, 1 < j < m, there is a disjunct C such that either (Bj V Ci)O E Ta or (Bj V Cj)O E T"M.,

{B.+i,..., Bki} C F. and the smallest factor of (C' V C, V ... V Cm)O subsumes C. By

the general induction hypothesis if (Bj V Cj)O is true in Ma then (B, V Cj)O is true in

THREE(MINSET(P,a)). Then, (Bj V C,)0 is true in every model in MINSET(P,a).

Therefore, by Lemma 2, (Bj V Cj)O is true in every model in MINSET(P,a + 1). Sim-

ilarly, by the general induction hypothesis and Lemma 2, {B,+ 1 ,..., Bk} 9 F+. By

the induction hypothesis in this part, if (B, V Cj)O E T" then (Bi V Cj)O is true in

19

MINSET(P, a + 1). Hence, C is true in every model in MINSET(P, a + 1). More-

over, C is true in THREE(MINSET(P,a + 1)).

(1.b) Let C E TMEo. By definition of TM'a, C is a logical consequence of M,. Therefore, by

the general induction hypothesis M, g THREE(MINSET(P, a)). Hence, C will be true

in any minimal model in MINSET(P, a), since these models are also models of M". Then,

C is true in every minimal model in MINSET(P, a + 1) by Lemma 2 making C true in

THREE(MINSET(P,a + 1)).

(1.c) It follows directly from Lemma 2 that C is true in THREE(MINSET(P,a + 1))

when C is true in M,,.

(2) C E FUFM. U Fo.

(2.a) Assume C E FM, = nfF,. By the definition of FM, if C E FM. then there is a
i<w

ground atom A occurring in C such that A E FM.. By the induction hypothesis we know

that every model in MINSET(P, a) is a model of M,. Then, by Lemma 2, every model

in MINSET(P,a + 1) is a model of M,. It is easy to prove that there exists a minimal

model N of P that is a model of M,+i. We prove that for every minimal model M where A

is true, N < M. Therefore, M cannot belong to MINSET(P, a + 1). Hence, C is false in

THREE(MINSET(P,a + 1)).

Let M be a minimal model of P such that A is true in M and M is a model of Ma.

Since M belongs to MINSET(P, a + 1), M has to be a model of Mc, (by the induction

hypothesis and Lemma 2). Therefore, N - M C S since N is a model of M,+,. We

also know that A E M - N and A belongs to S,,. Therefore, by the order associated with

the atoms in HB(P) by MINSET(P, a + 1), for all atoms D in N - M, D -< A. Then,

VD E N- M 3A E M- N(D -- A). Hence N<M.

(2.b) Let C E FM. By Theorem 2, C is false in all minimal models of Dis(P, M,) and by

the induction hypothesis M,, _ THREE(MINSET(P, a)), hence C is false in any minimal

model in MINSET(P, a), as these models are models of M,. Then, C is false in all minimal

models in MINSET(P, a + 1) by Lemma 2, making C false in THREE(MINSET(P, a +

1)).

(2.c) It follows directly from Lemma 2 that C is false in THREE(MINSET(P, a + 1))

when C is false in Ma.

20

Consider the case when / is a limit ordinal. If a disjunct C is true in MO then C is true

in Us<OTM, U U.<# TM'a. Then, C is true in MINSET(P, a), for some a </0. (from (1.a)

and (1.b)). Therefore, C is true in THREE(MINSET(P, /)), by Lemma 2. If a conjunct

C is false in Mp then C is false in U,<o FM. UUa< FE.. Then C is false in MINSET(P, a),

for some a < #. (from (2.a) and (2.b)). Therefore, C is false in THREE(MINSET(P, /)),

by Lemma 2. 0

The following is a technical lemma used to prove Stattement 2 in Theorem 4.

Lemma 4 If M E MINSET(P, a) then M is a model for TD U TED.

Proof:

(1) M is a model ofTO = UM4_& T,. We prove by induction on i that M is a model for every

element in TM. For the base case there is nothing to prove since TT = 0. As induction

hypothesis assume that if C E Ti then M = C, for some i > 0. Let C E TTi 1 . Then, there

exists a ground instance of a clause in P, C' '- B1,..., Bin, -'Bmi,... , -,B,, such that either

BiVCi E Ti or BiVCi is truein Ms for <i<m, -'Bi is truein M, form+1 < i<n

and C is subsumed by C' V C, V ... V Cm. Since M, C THREE(MINSET(P, a)) every

minimal model of THREE(MINSET(P, a)) is a model of Ma. Therefore, M is a model of

M,. Then,

1. if B V Ci is true in M then M H Bi V Ci.

2. if -'Bi is true in M, then M H "Bi.

3. if B V Ci E T" then by the induction hypothesis M H Bi V Ci.

Given that M is a model of P we have that M H C'V B,+1 V ... V B, - B 1,..., B,. If

M C = for all I < i < m then M H B, A... AB, (by 1 & 2). Therefore, M H C' since

M --B+i A ... A -B,, (by 3). Hence, M H C since C' subsumes C. If M H Ci for some

I < i < m then M C since Ci subsumes any clause that C' V C1 V ... V Cm subsumes.

(2) M is a model of T E D. Similar to Case 1. 0.

Lemma 5 For any ordinal a, THREE(MINSET(P, a)) g Ma+i.

21

Proof: THREE(MINSET(P, a)) C Ma+, if and only if every (minimal) model M of

M+, belongs to MINSET(P,a). Assume Te, = {A E HB(P): A is true in M} and

F# = {A E HB(P): A is false in M6}. Then, T,+, C M and F+ 1 fiM = 0. Assume

that there exists a model N such that N < M and N E MINSET(P, a). Since M0, g

THREE(MINSET(P,a)) then T C N and F flN = 0. Therefore, N - M C Y,-, and

M - N C T,,. Moreover, N - M C F.+ 1 U S,+ and M - N C U S,+, by the previous

lemma. Then, N cannot be preferable to M since the elements in M - N are incomparable

with the elements in N - M contradicting our assumption. 0

Corollary 3.2 Every model of MPED is a minimal model of P. 0

Corollary 3.3 Mif D is a consistent state.

Proof: We check that the computation at each step is consistent. i.e. we have to prove

(Tm U TMD U -F U ,ED is consistent, for all a. By Lemma 3 we have that:

M C THREE(MINSET(P,a)).

Therefore Mk+l C THREE(MINSET(P, k+1)). Then, the models in THREE(MINSET(P,k+l))

are models of (TDk U TED U U ,,, U D- Hence (TDk U U EDU UFMD) is consistent.

4 Procedural Semantics

In this section we present SLIS-resolution, a proof-procedure to answer queries on general

disjunctive programs based on the generalized disjunctive well-founded semantics. This

procedure is a modification of SLOC-resolution [MRL] and the procedure described by Lobo,

Minker and Rajasekar in [LRM88] to compute answers in (positive) disjunctive programs

using the Generalized Closed World Assumption and the Weak Generalized Closed World

Assumption, respectively. All these proof-procedures are based on SLI-resolution [MZ82,

MR88], an extension of SL-resolution [KK71] that allows arbitrary literal selection. The

main structures used in SLIS-resolution are t-clauses.

Definition 4.1 A general t-clause F, is an ordered triple <T,A,C> where

22

* T is a labeled tree. The root is labeled with the distinguished symbol e, and the other

nodes are labeled with literals; and

" A and C are marking relations on the nodes such that every non-terminal node belongs

to the A marking relation. 0

Literals with A marking are called A-literals and literals with C marking C-literals. Un-

marked literals are called B-literals. We will use "*" and "+" to mark A-literals and C-

literals respectively. A general disjunctive clause is represented by a general t-clause where

every negative literal in the body is marked as a C-literal, the remaining literals are B-literals

and the distinguished symbol E occurs in the t-clause.

Example 4.1 (e- P Q -R S+) is a general t-clause representation of the program clause

P V Q +- R A -S where P, Q and R are B-literals and S is a C-literal. 0

More complex t-clauses will be created by the derivation steps described below. The idea is

to keep the ancestry information of each literal in the derived clause in the t-clause structure.

A general t-clause can be viewed as a pre-order representation of a resolution tree. We next

give a formal definition for SLIS-resolution. First, we define two sets of literals which are

used in the definitions.

YL = {M: where M is a B-literal, and M is one node off the path from the root E" of L}

6L = {N: where N is an A-literal, and N is on the path between the root E* and L}

A t-clause is said to satisfy the admissibility condition (AC) if for every occurrence of every

B-literal L in it the following conditions hold:

(i) No two literals from L and L have atoms which unify.

(ii) No two literals from L and L have atoms which unify.

If we look at the t-clauses as resolution trees, we say that a t-clause r satisfies the minimality

condition (MC) if there is no A-literal in r which is a leaf or terminal node. 'IL and 6L are used

while performing factoring and ancestry resolution respectively. Definitions for factoring and

ancestry resolution are given below1 .

Definition 4.2 Consider a general t-clause Co. Then C,, is a tranfac - derivation (trunca-

tion, ancestry and factoring) of Co when there is a sequence of general t-clauses CO, C1,..., C,

'Ancestry and factoring are similar to that in SL-resolution

23

such that for all i, 0 < i < n, Ci+I is obtained from Ci by either t-factoring, t-ancestry, or

t-truncation.

Ci+I is obtained from Ci by t - factoring iff

(1) C is (a, L 02 M 0a3) or C is (a, M a2 L 03);

(2) L and M have the same sign and unify with mgu 0 ;

(3) L is in fM(i.e., L is in an higher level of the tree);

(4) Ci+i is (a, L 02 a3)0 or Ci+I is (a, a 2 L 03)0

Ci+1 is obtained from Ci by t - ancestry iff

(1) Ci is (a, (L* a2 (a3 M 04) a 5) a6);

(2) L and M are complementary and unify with mgu 0 ;

(3) L is in 6M;

(4) Ci+, is (0, (L* a2 (03 a4) a5) 16)0;

Ci+I is obtained from Ci by t - truncation iff

either Ci is (a (LS) /3) and Ci+I is (a /3).

or Ci is (5*) and Ci+I is 0.

The underlying idea behind the generalized disjunctive well-founded semantics stems from

the fact that for any model M of a genera! disjunctive program P that assigns true to a set

of atoms {B 1,..., Bm} that occurs in a program clause of the form:

A, V... V Ak - B,...,Bmr,< Bm+l,..... Bn,

M also assigns true to the disjunction A 1 V ... V Ak V Bm+i V ... V B,,. This allows us to

use any variation of a rule, where we move a (not necessarily proper) subset of the negated

atoms in the body to the head in the resolution process.

Example 4.2 Consider the program:

p4-a

p4-b

a -

b -- -a

we can deduce p from the variant a V b of the rule a +- -'b.

A formal definition for variant clauses is the following:

24

Definition 4.3 Given a general t-clause F = (e*Al ... A,, "B I . .. -'B, C'... C +) where

n + m + p > 1 and n > 0, m > 0, q 0 0. A mark variant off is a t-clause of the form

F'= a...a C...C "B...",B" C+...C'+) where for 1 < i < n A' is a variable

variant of A2 , for 1 < j < m, B is a variable variant of Bi and {C',..., C} U{Cq+,...,C}

forms a partition (modulo variable renaming) of {Ca,..., Cp}. C', 1 < i < q are called the

mark variant atoms of F. 0

In addition, two rules of negation are used in the process of derivation: the GCWAC and a

minimization rule that assumes an atom false if all the rules that define the atom, (i.e. rules

with occurrences of the atom in the head) can be assumed false. Roughly speaking, the former

rule allows us to prove d in the program P1 = {d - -c; c - a, b; c V e +- f; a V b, e; f}.

The latter allows us to prove p from the program P2 = {p - "q; q +- m; q +- s}.

In the process of proving d and p we have to prove that c is false in P and that q is false

in P2. To prove c is false we use the first rule of negation. Therefore, we have to prove for

all positive clauses of the form a, V... V a,, V c that we can derive from P we can also derive

a, V ... V a,,. In this case, the only clauses of this form are a V b V c and c V e. So, if a V 6

and e are true then we can assume -c. To prove q false we use the second rule. This means

that we have to prove that there is no rule with q in its head such that the body of the rule

is true. In this case, we have to prove that m and s are false in order to assume q false.

We use two different structures in the proof procedure to implement the two rules of

negation: +trees whose leaves will contain the positive clauses needed to be proved true in

order to assume the query (in our case this will be the negation of the query) true and SLISNF

trees whose leaves will contain the clauses needed to be proved false in order to assume the

(negation) of the query true. In the following definitions we introduce the concept of the

rank of an SLIS-refutation, a +tree and an SLISNF tree. This definition is irrelevant for the

procedure but it will be used in the proof of soundness.

Definition 4.4 Given a general program P, an SLIS-derivation from a set of t-clauses

T = {T1 , ... , T,} is a (possibly infinite) sequence of general t-clauses (C1 , C 2 ,...) such that

C, is a tranfac-derivation of a clause in T and for each Ci = ('*a L /1) either

(1) L is a B-literal and C = (e*2 M /32) such that either C is clause in P or a mark variant

of a clause in P with M as one of the mark variant atoms and

25

1. L and M are complementary and unify with mgu 0

2. Ci+1 is (E*al (L*a 2 32) /1)0.

3. Ci+I is a tranfac-derivation of Cf+1 .

4. Ci+I satisfies the admissibility and minimality conditions.

or

(2) L is a ground C-literal A+, there exists a successful (positive tree) +tree, or a finitely

failed SLISNF tree, for (e*-'A) and Ci+i = (e*al 3) (see Definitions 4.5 #d 4.7 for the

definitions of +trees and SLISNF trees respectively).

An SLIS-refutation is a finite SLIS-derivation (C1, C2,..., C,') such that Cn = 0. If Ci+l

is obtained via Case 1, Ci+1 has the rank of Ci. If Ci+1 is obtained via Case 2 and (f*-'A)

has a +tree or a failed SLISNF tree of rank tc. The rank of Ci+I is the maximum between

K + 1 and the rank of Ci. C, has rank 1. The SLIS-refutation (Ci, C2,... , Cn) is a refutation

of rank n iff K is the rank of Cn. C

Before presenting the definition of +trees we need to define positive selection functions.

A selection function is positive if the function selects only negative B-literals. This function

is called positive because negative B-literals in a t-clause represent positive literals in the

body of a disjunctive clause (see Example 4.1). The interest of positive selection functions

comes from the definition of the GCWAC where we want to derive all possible positive

zlauses. The clause formed using the B-literals and the C-literals at any step of an SLIS-

derivation is a logical consequence of the program and the set of t-clauses T. Using a positive

selection function in a derivation will result in clauses with only positive B-literals and C-

literals. Proving that the clause formed with the B-literals is a logical consequence of the

program allows us to assume the initial goal to be false by the GCWAC. SLIS is based on

SLI-resolution which is complete and sound for an arbitrary selection function. Hence, it is

complete and sound for a positive selection function. The completeness and soundness of

SLIS-resolution is based on this and the GCWA.

Definition 4.5 Given a program P, a positive selection function R and general t-clause G,

a +tree, T+ is defined inductively for G as follows:

26

(1) The root of T+ is G.

(2) For a node D = (E*al L /1), assume L is selected by R. Then, there is a child H of D

for each t-clause C = (Cea 2 M #2) such that either C is a clause in P or a mark variant of

a clause in P with M as one of the mark variant atoms and:

1. L and M are complementary and unify with mgu 0

2. H' is (,*a (L*a 2 02) 01)0.

3. H is a tranfac-derivation of H'.

4. H satisfies the admissibility and minimality conditions. 0

There are three classes of leaves in a +tree (resp. SLISNF) tree.

1. Empty leaves which contain the empty clause 0.

2. Dead leaves which contain negative B-literals that do not match any clause in P.

3. Goal leaves which contain only positive B-literals and C-literals in the frontier. We

denote the set of B-literals of a goal leaf G by B(G), and the set of C-literals by C(G).

Definition 4.6 If TG contains an empty leaf then T+ is a failure +tree. Otherwise, if all

the leaves are dead leaves or goal leaves and for each goal leaf G there is an SLIS-refutation

for {(,E* -A,),. .. , (,* -An), (c* -Bl),..., (f* -Bm)} from P, where B(G) = {A1, ... ,An}

and {B 1,..., Bm} is the subset of ground atoms in C(G), then T+ is a successful +tree.

In any other case T+ is an undefined tree. A dead leaf has rank 1. A goal leaf G has rank K

iff the SLIS-refutation for {(* -A,),...,(e* -A,), (c* -'BI),...,(E* -B,)} has rank K. T +

is of rank K iff K is the least upper bound of the ranks associted to the leaves of T+ . 0

Example 4.3 Let P be the following disjunctive program:
a b, c
b e
e V c +- -

The following is a successful +tree for -a:

27

-a*

-a*

"~e
-a

- e e d
+

-'a$

c d+

We can obtain an SLIS-refutation for {(e*-,c), (e*-,d), (e*--,e)} from the third rule of the

program.

Example 4.4 Let P be the following disjunctive program:
p +-a, b
a 4--1b, -'c
b -,a, d
cVd

The following is a successful +tree for -p:

28

I

-a. -be -a. -be -a. -6 -40-b

,- I I 1 111 11 -1 -11 11-

b+ c+ a+ d b+ c+ a+ C+ b d+ 4+ d b d+ a+ C+

There are four more leaf nodes in the tree that are obtained from mark variants that are

not presented in the figure. But since in +trees C-literals and positive B-literals are handled

in the same way these nodes will have the same SLIS-refutation as the leaf nodes in the figure.

Finally, it is easy to see that there are SLIS-refutations for {(,*-'b), (e'c), (e -'a), (&'-id)}

and {(,E-'b), (e*-d), (*-'a)} using the third clause in the program.

Definition 4.7 Given a program P, a ground atom A and a positive selection function R.

A SLISNF tree, Ts for G = (e*-,A) is defined as follows:

(1) The root of TG is G.

(2) For a node D = (e'act L 81), assume L is selected by R. Then, there is a child H of G

for each t-clause C = (e'M D, ... Dk -,B ... -,B, B++, ... B+) in P such that:

1. L and M are complementary and unify with mgu 0

2. H' is (eia, (La 2 132) 01)0.

3. H is a tranfac-derivation of H'.

4. H satisfies the admissibility and minimality conditions.

If all leaves are either dead leaves or goal leaves and for all goal leaves, one of the following

conditions is satisfied:

29

1. There is an SLIS-refutation for {(" -'D1) ... (e -'Dk)} from P, where {D1... Dk} C

B(G) and has the same parent. This leaf has rank r. + 1 iff the SLIS-refutation is a

rank ic refutation.

2. There is an SLIS-refutation for {(e -,B, ,) ... (e° -Bn) } from P, where {B,+n ... B+} C

C(G), each Bi is a ground atom and have the same parent. This leaf has rank X + 1

iff the SLIS-refutation is a rank K refutation.

3. (,* -BI... -B,n) has a successful +tree, where -,B... -B, are marked nodes in the

goal leaf and have the same parent. This leaf has rank / + 1 iff the +tree is of rank x.

Then Ts is a failed SLISNF tree. If TS contains an empty leaf then Ts is a successful

SLINSF tree. In any other case TG is an undefined tree. All dead leaves are rank I leaves.

TG is of rank K iff x is the least upper bound of the ranks associated with the leaves of Ts .0

Example 4.5 Let P be the following disjunctive program:
a b, c
b- eeVc4--d
f +- --d

The SLISNF-tree for (e--a) using this program is similar to the +tree in Example 4.3.
The only leaf of the SLISNF tree is the following:

-'a*

I d

c -d

And this is a dead leaf since there is no rule with d in the head (in contrast to +trees

where -,d can be selected to be resolved with the mark variant f V d of f +- -,d).

The conditions of the subset of C(G) being ground for the SLIS-refutations for suecessful

+trees and in Condition 2 in failed SLISNF trees are necessary for the soundness of the

procedure as the two following examples show:

Example 4.6 Let P be:

m(X) 4- -q(Y), -,p(Y)

30

p(a) V q(a) r(b)

If we build a +tree starting with (es-rm(a)), the only goal leaf that we obtain is:

(F- (-'m(a)* q(Y)+ p(Y)+)). Using the second rule in the program we can find an SLIS-

rvfutation for {(e"-q(Y)), (*-'p(Y))}. Therefore, If we allow non-ground atoms in the

subset of C(G) used for the SLIS-refutation on the leaves in +trees, we are able to find a

successful +tree for (e*-m(a)) even though m(a) is true in MED.

Example 4.7 Let P be:
Me(X) ,-- q(Y), "-p(Y)

q(Y)

p(a)

r(b)

If we build a +tree ,4tarting with ('-m(a)), the only goal leaf that we obtain (before the

tranfac-derivation) is: (e" (-,m(a)" (q(Y)*) p(Y)+)). If we allow non-ground atoms in the

subset of C(G) used for the SLIS-refutation on the leaves in SLISNF trees, we are able to

find a failed SLISNF tree for (eC-m(a)) even though m(a) is true in MJED.

We will find SLIS-derivations that are stopped because the ground condition does not hold

for any subset of C(G). We call these derivations floundering derivations. SLIS-refutations

allow us to prove when either a positive (not necessarily ground) clause or a negated ground

atom is true in VIED. More general queries can be obtained combining these two types of

queries. We also have to assume that the queries have a non-floundering SLIS-refutation.

We call a query with a non-floundering derivation a non-floundering query.

Theorem 5 (Soundness) Let P be a general disjunctive program, Q = A, V ... V A,, be a

positive clause and L = -A be a negative literal. Let Q and L be non-floundering queries.

1. If there is an SLIS-refutation for {(,E-'AI) ... (c,-A.)} from P then MPED 3Q.

2. If there is an SLIS-refutation for {(eCA+)} from P then MED H L.

Proof: We prove by induction on the rank of a refutation, that:

31

1. If there is an SLIS-refutation for {(e-,A1) ... (e'"A,)} from P, and the SLIS refuta-

tion with minimum rank has rank x, then M, 3Q.

2. If there is an SLIS-refutation for {(e.A+)} from P and the SLIS refutation with min-

imum rank has rank xc + 1, then M. 1= L. By definition of SLIS refutation, an SLIS-

refutation of rank xc + 1 for {(c*A+)} from P, means that there is either:

(a) a successful +tree of rank x for {(,e-,A)} from P.

or

(b) a failed SLISNF tree of rank xc for {('-,A)} from P.

(1)Since an SLIS refutation of rank 1 is an SLI refutation, this is true by the soundness of

SLI refutation [MZ82].

(2a) A successful +tree of rank 1 for {(e-A)}, means all leaves of the +tree are either goal

leaves or dead leaves and for all goal leaves G, where B(G) = {A 1,.-, A,,} and {B1, • • -, B,'.

is the subset of ground atoms in C(G); and there is an SLIS-refutation of rank 1, for

f(W",Aj) ... (e*-A,,)} from P. Due to the similarity of the structure between +trees of

rank 1 and SLINF trees [MR88] this means that for all A V K that have a SLIS refutation

of rank 1 there is a SLIS-refutation of rank 1 for K. By the equivalence of the syntactic and

semantic definitions of the GCWA [Min82], this means A is false in all minimal models of P,

and hence A E FBIo; i.e. M1 L.

(2b) A failed SLISNF tree of rank 1 for G = {(E-,A)} means all leaves of the SLISNF tree

are dead leaves. The proof for this case is similar to the inductive case.

Induction Hypotheses: Statements 1 and 2 are true for all r. < y.

/C = A

(1) There is an SLIS-refutation for {(e--Al) ... ('",A,,)} from P, and the SLIS refutation

with minimum rank has rank p. This means there is a finite SLIS-derivation (C1 , C2,..., C")

such that C, = 0 and the rank of C, is p. Let i be the largest integer such that the rank

of Ci is less than p. Then Cj+1 is obtained from Ci by Case 2 of Definition 4.4, where

Ci = (e'aj L i31), L is a ground C-literal B+, # is a successor ordinal and there exists

a successful +tree of rank p - 1, or a failed SLISNF tree of rank j - 1, for (eo-B) and

C,+j = (,eal /h1). By part 2 of the induction hypotheses this means M,-, -'B which

32

implies M,, -,B. Using the information M, 1= -,B (as an oracle), we can assume the

rank of Cj+I to be equal to the rank of Ci, i.e. less than p. Therefore, the rank of C. = 3

will be less than p since the rank of C,, is same as the rank of C,+., and by the induction

hypotheses, MM J= 3Q.
(2a) There is a successful +tree of rank i for {(e*'-A)} from P. That means all the leaves of

the +tree are either dead or goal leaves and for all goal leaves G, where B(G) = {AI,... , A,,}

and {BI,..., B,} is the subset of ground atoms in C(G) there is an SLIS-refutation of rank

/i or less than i, for {(e* -,A), ... , (e -A.), (e -,B-),...,B(-B,.)} from P and the lub

of these ranks is u. By the induction hypotheses and part(l) of the proof when xc = p,

M; = .V.A V B V... B,., for all cases when MI A V A, V... At V BI V-.. B,, which

means A is false in M by Lemma 6. i.e M, H L where, L = -'A.

Lemma 6 Let A be a ground atom and m be an ordinal larger or equal than 1. Then

3A, V ... V A,, a ground clause, such that (MI H A V A, V ... , VA, but M,, m A, V . .. V A,)

iff A is true in some minimal model of M,,,.

Proof (similar to the proof in [She88I)
(=0)

M, V A1 V-.- V A, means, A1 V ... V A, is false in some minimal model M of M,. Since M

also belongs to MI, and A V A, V- . V A, is true in all minimal models in M1 , A V A1 V--- V A,

is also true in M. But as A, V ..- V A, is false in M, hence A must be true in M.

Let A be true in a minimal model M of M,,,, and let {A, A2,-. -} be the set of all ground

atoms false in M. Then, as M is a minimal model of MI, M1 U {-,A, -,A2,- .- } U {--A} is

inconsistent, (otherwise M will not be minimal in MI). By compactness some finite subset

is inconsistent, i.e., for some finite r,

M U {-'A 1,. .- , A,.} U {-,A} is inconsistent, which means MI H A V A, V ... V A,.. But

M,,, & A1 V ... V A, because A, V ... V A, is false in M. 0

(2b)There is a failed SLISNF tree of rank / for {(e -A)} from P. That means all leaves of

the SLISNF tree T'C..A)} are goal leaves or dead leaves and for all goal leaves, one of the

following conditions is satisfied.

33

1. There is an SLIS-refutation of rank less than A for {(c DI) ... (e -Dk)} from P,

where {D1 ... Dk} _ B(G) and have the same parent.

2. There is an SLIS-refutation of rank less than i for {(e -B,,+,)... (e* -B,)} from P,

where {B+ 1 ... B+ } C_ C(G), each Bi is a ground atom and have the same parent.

3. There is a successful +tree of rank less than it for (e* -B 1 ... -B,,) where -SB; ... -B

are marked nodes in the goal leaf and have the same parent.

The lub of the ranks of the goal leaves is p. We have to prove now that M L, where L

= -'A. Consider the set U = { C : 3 a failed SLISNF tree of rank p for {(e" -C)} }. By the

induction hypotheses and the definition of a failed SLISNF tree of rank p,
U =

C:T(.) has only goal leaves or dead leaves and for all goal leaves there is an ordinal

v < p such that one of the following conditions is satisfied:

1. D, V ... V Dk is true in M, where {D1 ... Dk} _ B(G) and have the same parent.

2. B,+, V..- V B, is true in Mi,, where {BI+ ... B:} _ C(G), each B, is a ground atom

and have the same parent.

3. B A ... A Bm is false in M,, where -'B,... -'B are marked nodes in the goal leaf and

have the same parent.

}

Let V be any arbitrary element of U. We claim that for all nodes N inTS ,there is an

ordinal v< p such that one of the following condition is satisfied:

1. B,+ V ... V B, is true in M, where {B.., ... B,} _ C(V), each B, is a ground atom

and have the same parent.

2. B 1 A ... A Bm is false in M,, where -B 1 ...- 'B, are marked nodes in N where each Bi

may or may not be marked, and have the same parent.

34

3. B, A ... A B,, is in F , where -,B1 ... -B, are marked nodes in N, where each Bi

may or may not be marked, and have the same parent.

4. D, v ... V Dk is true in M, where {D1 ... Dk} C B(V) and have the same parent.

We prove the above claim by contradiction. Suppose there is a node N in T'e*..,v)}, where

none of the above conditions is satisfied. This would mean for each Bi, 1 < i < m there will

be a goal leaf of T(..,v)}, that is a descendant of N1 , where the conditions required to be

in U will be violated and hence V will not be in U making our assumption false. Since V is

any arbitrary element of U, the above claim is true for all elements of U. Since A is in U,

the above claim is true with respect to A also and by definition of FMD, A E FM. Hence

M 1= L, where L = -'A. 0

We need the definition of ground SLISNF trees for completeness proof of SLIS-resolution

Definition 4.8 Given a program P and positive selection function R. A ground SLISNF

tree, TG for G is defined as follows:

(1) The root of TG is G.

(2) For a node D = (e 'a L I31), assume L is selected by R. Then, there is a child H of

G for each t-clause, C = (e*M D1 ... Dk -'B1 ... -'B B.'+1 ... B+), ground instance of a

t-clause in P such that:

1. L and M are complementary and unify.

2. H' is (Wa (Wa 2 12) #1).

3. H is a tranfac-derivation of H'.

4. H satisfies the admissibility and minimality conditions.

If all leaves are either dead leaves or goal leaves and for all goal leaves, one of the following

conditions is satisfied:

1. There is an SLIS-refutation for {(e* -DI) ... (e, -'Dk)} from P, where {D ... Dk} C

B(G) and have the same parent.

2. There is an SLIS-refutation for {(" "Bm+i) ... (e* -B,)} from P, where {B+ 1+ ... B + }

C(G), each Bi is a ground atom and have the same parent.

35

3. (e* -"B1 ... B .B) has a successful +tree, where -B* ... "-B are marked nodes in the

goal leaf and have the same parent.

Then T s is a ground failed SLISNF tree. If T s contains an empty leaf then TG success

SLINSF tree. In any other case T s is an undefined tree. 0

Theorem 6 (Completeness) Let P be a general disjunctive program, Q = A1 v ... V A,, be

a positive clause and L = -A be a negative literal. Let Q and L be non-floundering queries.

1. If MED 3 BQ then there is an SLIS-refutation for {(e-,A1) ... (c'-A,,)} from P.

2. If MpD E L then there is an SLIS-refutation for {(e&A+)} from P.

Proof: According to Definition 3.11, MpE = U M, for some (countable) ordinal S. We prove
0<5

the theorem by induction on a. When a = 0, Il,, =< 0, 0 > and the theorem follows directly.

Assume for an ordinal a and non-floundering queries Q = A, V. .. V A,, and L = -A, if /3 < a

and Alp F- 3Q and M# F- L then there exists SLIS-refutations for {(e*-A) ... (,E*-,An)} and
{(E*'A+)} from P. Suppose now, there are non-floundering queries Q = A1 V ... V A,, and

L = -'A such that M0 , I- 3Q and M# I-- L but Mo V! 3Q and MA V- L for any /3 < a.

Case 1: Q = A1 V ... V A,,. Then M , I- 3Q. Therefore, there is a finite set of ground

substitutions {91,...,8t} such that M , I- QOt V ... V QO1. If a is a limit ordinal then

U MO I- Q81 V ... V QOt. Hence, there exists /3 < c such that MO F- Q01 V ... V QOt. Then

M0 I- 3Q contradicting our assumption that IV# V 3Q for any /3 < a. If a is a successor

ordinal /3 + I then Mp U < TMe, FMo > U < TE , FE >t- Q01 V ... V QOt. Therefore

QO1 V ... V QOi E TM U TI.

(a) QO1 V... V QO, E Tw_ U T. . By induction on n we prove there is an SLIS-refutation
n<wa

for Q01 v ... v QO9. The base case follows immediately since T = 0. Assume that for

every C E TM' there is an SLIS-refutation and suppose Q01 V ... V QO, E . Therefore,

there exists a rule A 1 V ... V A, +- B 1 ,..., B,, -'L1,... , -L, in the program P where the

As, Bs and Ls are atoms and a ground substitution 6 such that for all i, 1 < i < k, such

that Bi6 V Ci either belongs to To or belongs to T , for all i, 1 < i < m, Li6 E FO and

A1 V ... v A, V C1 v ... V Ck, subsumes QO1 V ... V QO1. Assume without lose of generality

36

that k = m = 1 and (A1 V ... V A, V C1)6 = QOi V ... V Q~t. Then, we start the refutation

with P and the set T = {(&-'A 1),...,(e*-A,), (-'CU1)}. Let (*-AO) be the initial t-

clause in the derivation. In the first derivation step we use (A, ... A. -B 1 L') as the

mark variant clause and obtain the tranfac-derivation of (e* (-A O... A. -B, L+))o, with

a the most general unifier between A10 and A,. By the induction hypotheses we know that

there are SLIS-refutations for T' = {(e* -,B 1)6, (e* -'C1)} and (e& L')6. Hence, there are

SLIS-refutations for {(e* -'B1)a, (e' -,C1)} and (e* L+)a since o is more general than 6 and

QO V ... V QOI is a non-floundering query since Q is non-floundering. We can use these

derivations (or more specific instanciations of these derivations) to construct a refutation for

We (-A91 A. -BI Lfl)u.

(b) Q0 ... V Qot E TMO Since = Tr,.(pMo) T w, this part can be derived from the

completeness of SLI-resolution with respect to the operator TDAi,(pM,). For that, assume we

have the disjunctive program Dis(P, Ma). By Theorem 1 and completeness of SLI-resolution

[MZ82] there exists an SLI-refutation for Q since Q0I V ... V QO belongs to Tis(PM,,) T w.

From the SLI-refutation of QOI V ... V QOI using Dis(P, Ma) we can build an SLIS-refutation

using P. First, notice that for each clause C = HVH1 V. .. VH, + B 1,..., Bk in Dis(P, MO)

where H is a positive clause and the Hi and Bi are atoms, there is a clause

C' = H +-- Bi,..., Bk, B+I, • .. •, B11 "-H, •. --, -'H,, "'H, +I, 7 . • .- .Hq

in P from where C was obtained. We follow the same derivation steps that are used in the

SLI-refutation for the SLIS-refutation of QI V ... V QOI but, instead of using clauses C from

Dis(P, M,3) we will use the mark variant:

H V H I V ... V H , 4- B,..., B , B,,+I,, B, ",H,,+,...-Hq

of C'. From the definition of Dis(P, A0) we obtain at the end of the SLIS-derivation a

general t-clause r with ground C-literals C+ (since Q is non-floundering) such that the Cs

are false in Ma and negated B-literals -'B such that the Bs are true in Me. Therefore, by

the induction hypothesis of the general proof we have SLIS-refutations for each C-literal and

B-literal in r. Hence, we have a refutation for r and therefore, a refutation for QOI V... V QO,.

37

Case 2: L is a negative literal -A. Then M,, - -A. If a is a limit ordinal then U Mo I- -,A.

Then, there exists /3 < a such that Mo I- -A contradicting our assumption. If a a is a succes-

sor ordinal 6 +1 then MO U < TM!, FMo > U < T E FE >h- -,A. Therefore A E FM, U FE

(a) A E FMe = n F' • We prove there is a ground SLISNF tree for (*-,A) and we lift this
n<w

proof to the non-ground case. For each ground instance (c*A El ... E "B1 -B "B. Bj+ ... B+)

of a program clause, we obtain a child H of the form (,E(--A E1 ... Ek "B 1 "Bm B, ++l ... B+)).

If there is no such rule, the node (*-A) is a dead leaf. Therefore, ('--A) is directly a failed

SLISNF tree for A. Otherwise, since A E FM#, one of the following cases holds for H:

1. (B+V... V B) ETs.

2. (BI A ... A B,) E Fs.

3. (B ... A B,) E F.

4. (El V... V Ek) E Ts.

If Case 1 holds then every node N below H contains {B+.,,... , Bn} I C(N), since any

selection function used to build a SLISNF tree is a positive selection function. In particular,

when N is a leaf node {BZ+,..., B + } C C(N). Therefore, by the induction hypothesis,

there is an SLIS-refutation for {((B+i),...E,(*--B,n)} from the program P for all the

leaves under H.

Similarly, if Case 4 holds then every node N below H contains {E 1,... , Ek} B(N),

since any selection function used to build an SLISNF tree is a positive selection function.

In particular, when N is a leaf node {E 1,...,Ek} _ B(N). Therefore, by the induction

hypothesis, there is an SLIS-refutation for {(*-,E1),..., (*-',E)} from the program P for

all the leaves under H.

If Case 2 holds, we have two subcases, either

(a) There is a failed SLISNF-tree T for (f*Bi) for some i, 1 < i < m; or

(b) There is a successful +tree for (e*B, ... ",Bm).

If (a) is true, we select Bi and attach T as the SLISNF subtree under H. 1± (b) is true then

every leaf below H contains a t-clause where Bl,..., Bm are marked literals of the same

parent and there is a successful +tree for (e*",Bl ..- 'B,).

38

If Case 3 holds then there is an atom B, for some i, 1 < i < m such that Bi E FM,. We

select B, to construct a SLISNF tree under H using the same procedure described for A.

By construction, all the leaves in this SLISNF tree are either dead leaves or leaves in

which one of the three conditions for failed SLISNF tree holds. Therefore, this tree is a

failed SLISNF tree for (c-,A). By the Lifting Lemma below (see Lemma 7) every ground

instance N' of leaf N in the SLISNF tree Ts constructed using the selection function for

the ground failed SLISNF tree TG, is a leaf in TG. Therefore, TA cannot be a failed tree for

(e',A), contradicting our assumption about T g.

(b) A E FME.. Similar to Part (b) in Case 1 but using the completeness result for the Support-

for-Negation rule with respect to the GCWA and Lemma 1. These two cases complete the

proof of the theorem. 0

Lemma 7 (Lifting Lemma) Given a ground atom A, let G = (e*"A). For every node N in

an SLISN tree Ts constructed using any positive selection function R, there is a node N', a

ground instance of N, in the ground SLISNF tree TA constructed using R. Moreover, all the

ground instances of N are nodes in TG.

Proof: Let tl,...,t,, be the t-clauses used in the path from G to N. Let 91,..., be

the mgus used in each step. Assume 9 to be the composition of these substitutions, i.e.

9 = 01 ... 0,,. Let 6 be a ground substitution such that 6 = 87y for some substitution -y.

Then, by definition of ground SLINF trees there is a path from G to Nb using ground

instances of t-clauses tp5,..., t,,6. Since the selection of -y is independent of the construction,

N' can be any instance of N. C1

To prove the general case (i.e. the non ground case), by contradiction, assume that G does

not have a failed SLISNF-tree and let TG be the ground failed tree for G. (e*-'A) does

not have a successful tree, otherwise SLIS would not be sound (contradicting Theorem 5).

Therefore, every SLISNF tree for (e-*,A) is undefined. This means that for each SLISNF

tree there is a leaf G such that none of the following conditions holds:

1. There is an SLIS-refutation for {(e' -D 1) ... (c ",D.)} from P, where {D, ... Dk} C

B(G) and have the same parent.

39

2. There is an SLIS-refutation for {(e ° -'B,,,+i) .. (e -'B,)} from P, where {B1+1 ... B + }C

C(G), each B is a ground atom and have the same parent.

3. (f* -'Bi .. -'Bm) has a successful +tree, where -iB, ... -B are marked nodes in the

goal leaf and have the same parent. 0

During an SLIS-derivation, we have to choose among different mark variants to perform a

derivation step. For example, given the two t-clauses (*-'p) and (E*qi q2 -q3 p+ q+), we can

use either (e*ql q2 -q3 p+ q+) or (c*ql q2 -q3 p+ q4) to obtain either (e*(-,p*ql q2 -q3 q4)) or

(f *(-p* q, q2 -'q3 q4)). There is no indication which of the two will lead us to the refutation.

A simple rule, based on syntactic characteristics of the program, allows us to reduce the

number of mark variants to consider in a refutation. Before presenting the rule we need the

following definition.

Definition 4.9 Given a general disjunctive program P,

1. A relation Q refers positively (resp. negatively) to a relation R if there is a clause in

P with Q occurring in the head and R occurring either in the head or a positive (resp.

negated) atom in the body.

2. The dependency graph of a program P is the directed graph representing the relation

refers. 03

With the relation refers we can obtain mutual dependencies between definitions of predi-

cates: two relations R and P are mutually dependent ifi" they belong to the same strongly-

connected component in the dependency graph. Mark variants are needed only when the

dependency between the mark variant atoms and the positive atoms in the clause is negative.

Definition 4.10 (Restricted Mark Variants) Given a disjunctive program P and a general

t-clause r = (e*A... An -Bi... -B. C+...AC+) where n + m + p > 1 and n > 0, m > 0,

q > 0. A mark variant of r is a t-clause of the form
I' n IA ...4" where for 1 < i < n A is a variable

variant of A,, for I < j !5 m, B is a variable variant of B, {C ,....Cq} UCq+,,. .,C }

40

forms a partition (modulo variable renaming) of {CI,..., Cp} and the relation symbols oc-

curring in {C ,..., C,} belong to the same strongly-connected component of some relation

symbol occurring in {AI,... ,A,}. C,, 1 < i < q are called the mark variant atoms of r. o

The following example shows how the rule is used.

Example 4.8 Let P be a program:

(1) p - q, -'a

(2) q - s

(3) a - b, c

(4) b -e

(5) e V c - -d

(6) s.

The SLIS-refutation for (e*-,p) is the following:

(&W-p) resolving with rule 1 we obtain
(*(-p* -'q a+)) resolving with rule 2 we obtain

(,E(-p (-q* -s) a+)) resolving with rule 6 after tranfac-derivation we obtain

(((-,p* a+)) using the +tree in Example 4.3 and after tranfac-derivation we obtain

0.

In this example, we do not have to consider the variant p V a +- q since p and a belong to

different components in the dependency graph of P. 0

Other important simplifications can be obtained in the use of mark variants to construct

+trees. Since while constructing +trees we use a positive selection function and in the

leaves of the trees we treat C-literals as positive B-literals we have to consider only the mark

variant whose unique mark atom is the one to which we apply resolution. This constraint

clearly reduces the branches in many +trees. We refer to these variants as selected mark

variants. In Example 4.4 if we use selected mark variants the +tree will only have two leaves:

the first and the third leaves, counting left to right.

41

5 Comparison with other approaches

In this section we compare the generalized disjunctive well-founded semantics to Ross's strong

well-founded semantics [Ros] and to Przymusinski's stationary model semantics [Prz]. In

Section 5.1 we describe stationary models, in Section 5.2 we describe the strong well-founded

semantics and we compare these with the generalized disjunctive well-founded semantics in

Section 5.3.

5.1 Stationary Semantics

Przymusinski [Prz] presents 3-valued stationary models of disjunctive logic programs, as

a generalization of 3-valued stable models for normal programs. His stationary semantics

of disjunctive logic programs is based on the set of all 3-valued stationary models of the

program.

Definition 5.1 ([Prz]) Let M be any Herbrand interpretation of the program P and consider

the reduced program P* obtained from P by using the Gelfond-Lifschitz reduction, namely,
by:

(i) Removing from P all clauses which contain some negative premise -, B such that B is

true in M;

(ii) Removing all negative premises from the remaining clauses.

M is a STATIONARY model of P if M is a minimal model of P* (Note P* is a positive

disjunctive program). 0

A 3-valued interpretation of P is a pair I =< T; F >, where T and F are disjoint subsets

of HB(P). The atoms in T are called true in I, those in F are false in I and those in U =

HB(P) - (TU F) are undefined. It is assumed that t is always in T, u in U and f in F. If I

is a 3-valued interpretation, then the truth value valt(C) of a ground atom C is defined as 1

(resp. 1/2 or 0) if C is in T (resp. U or F). For a negative literal -' C, valI(-'C)=1-valt(C).

Definition 5.2 ([Prz]) A 3-valued interpretation I =< T; F > is a model of a disjunctive

program P if for every clause A1 V... V Am n L 1,.",Ln in P, maz{valt(Ai) : i < m} >

min{val(Li) : i < n}. 0

42

Definition 5.3 ([Prz]) If I and I' are two 3-valued interpretations of P then I is said to be

less than or equal to I' if valt(A) < valj,(A), for every atom A. 03

Minimal 3-valued models with respect to the above ordering are defined in the usual way.

Definition 5.4 ([Prz]) 3-valued Stationary Models

Let M be any 3-valued interpretation of a disjunctive logic program P. Replace every negative

_premise L--' C in every clause in P by "t" if L is true in M, by "u" if L is undefined in M

and by "f" if L is false in M. As a result we obtain a positive disjunctive program P*. We

say that M is a 3-valued stationary model of P if and only if M is a minimal 3-valued model

of P*. 0

Definition 5.5 ([Prz]) The STATIONARY SEMANTICS of a disjunctive program consists

of all closed formulae of the language that are true in all 3-valued stationary models of P. c0

5.2 Strong Well-Founded Semantics (SWFS)

The strong well-founded semantics(SWFS) of disjunctive logic programs [Ros] is based on

global trees and strong derivations.

Definition 5.6 ([Ros]) Let Q and Q' be sets of extended literals (disjunctions or negated

disjunctions). Q' is said to be strongly derived from Q (written Q -= Q') if Q contains a

disjunction D and there is some instantiated rule R given by H+-- RIA... ARjA- S1 A...A-,Sk,

such that either

(SI) H (D and Q' = (Q- {D})U {R, V D,...,Ri V D,-,S,...,',Sk}

or

(S2) H g D, HnD 3 0 (say c = H-D), andQ' = (Q-{D})Uf{R1 ,...,Rj, -SI,..., -Sk, -,C}

0

Intuitively Q 4- Q' means "if all of Q' is true then all of Q is also true." If the last element

of a finite strong derivation sequence for disjunct D is empty or has only negative extended

literals then the last element is called the basis for D.

Definition 5.7 ([Ros]) The strong global tree £7, for a given disjunction D, has the root as

D and for any internal node D' of £7, has children as disjunctions which are of the form,

43

, where Q ranges over all bases for D. If Q = {-'L,... -,Ln} is an arbitrary set of ground

negative literals then i is the disjunction L1 V ... V L.

Truth assignments of ground disjunctions in rb is defined as follows:

1. if every child of D' is true, then D' is false.

2. If some child of D' is false, then D' is true.

3. all other nodes are undefined. 0

Using the above definition a disjunction D is inferred to be true (false or undefined) by

the strong well-founded semantics if D is assigned true (false or undefined) in FL'.

5.3 Comparison

Example 5.1 Consider the program P consisting of the clauses:

a - b

a -- 'c
bVc

It has three minimal models {a,b}, {a,c} and {b,c}. Among these three {a,b} is a stationary

model as {a,b} is a minimal model of the corresponding P* = {a, b V c}. Similarly {a,c}

is a stationary model. But { b,c} is not a stationary model as the corresponding P* = {b

V c}. The 3-valued interpretations M1 =< {a,b}, {c} > and M2 =< {a,c}, {b} > are the

3-valued stationary models of the program. From this it is clear that a is true in all 3-ualued

stationary models of the program, P.

Considering the strong well-founded semantics of Ross [Ros], in r: with respect to the

above program a has two children b and c, as a has two bases ",b and -,c. The children of

b is c and c is b and this continues infinitely, as the basis of b is -c and the basis of c is

-b. Hence a is inferred to be undefined by the strong well-founded semantics of Ross [Ros].

Intuitively this is because it uses a "rule at a time" transformation of sets of extended literals.

In this example, the Minset(P) of generalized well-founded models is equal to the set

of stationary models. a and b V c which are true in GDWFS are also true in all the 3-

valued stationary models of the program. Also these are the only clauses that are true in

all the 3-valued stationary models of P. Similarly, b A c is the only conjunct that is false

in all the 3-valued stationary models of P, and are assigned false in GDWFS of P. Hence,

44

THREE(Minset(P)) =< 11 a, b V c II, [bc] >. 13

Example 5.2 Consider a program P consisting of the clauses:

a -b

b - -'a

p -a

p -b

cVd +-p

P has six 3-valued stationary models M, =< 0, {c} >, M 2 =< 0, {d} >, M3 =< {p, a, c}, {b, d}>,

M 4 =< {p,a,d}, {b,c} >, Ms =< {p,b,c}, {a,d} >, and A16 =< {p,b,d}, {a,c} >. M, is

a 3-valued stationary model of P because the corresponding P* is {a -- u, b +-- u, p +- a,

p -- b, c V d -- p}. The minimal model of P* has a, b and p as unknown. To be a model of

c V d +- p, c V d has to be unknown. Hence the minimal model will have one of c and d as

unknown and the other as false. Hence < 0, {c} > is a minimal model of P*, making it a

3-valued stationary model of P. The case for M 2 is similar.

M 3 is a 3-valued stationary model of P because the corresponding P* is { a, p *- a, p -- b,

c V d +-- p}. Hence, a and p are true in the minimal models of P*, one of c and d is true and

the other is false in the minimal models of P*, and b is false in the minimal models of P*.

Hence < {p, a, c}, {b, d} > is a minimal model of P* making it a 3-valued stationary model

of P. The case for M 4, M5 and M6 are similar.

Considering the strong well-founded semantics of Ross [Ros], in r with respect to the

above program, p has two children a and b. This is because p has two bases -'a and -'b

through the following two strong derivation sequences.

{p} = {p V a} 4- {p V a V b} # {-'b} and

{p} <-= {p V b} -= {p V a V b} <- {-'a}. The child of a is b and of b is a and this continues

infinitely, as the basis of a is -'b and the basis of b is -'a. Hence p is undefined in IP. For

similar reasons cV d is undefined in r'Vd. But if the first two rules in the program are replaced

by the clause a V b then the derivation sequence of p will be {p} -= {p V a} -= {p V a V b} 0

and p will assigned true.

The Minset(P) of generalized well-founded models is the set {{a, p, c}, {b, p, c},

{a, p, d}, {b, p, d}. In this case then, THREE(Minset(P)) =< 11 aVb, p, cV d j1,[ab, cd] >.

45

Hence, for the program P, neither c V d nor p is true in all the 3-valued stationary

models, and the strong well-founded semantics of Ross, while they are true in the generalized

disjunctive well-founded semantics. 0

6 Future work

Przymusinski [Prz88b, Prz88a, Prz89a] studies the relation between non-monotonic reasoning

and different semantics of logic programs. In particular he studies the relationship between

well-founded semantics and 3-valued formalisms of non-monotonic reasoning. He proves that

the well-founded model of a program P is the intersection of all models of prioritized cir-

cumscription, CIRC3(P;S0 > ... S6), where {S}Q<$ is the dynamic stratification of P, based

on the well-founded semantics. Presently we are studying the relationship between a differ-

ent 3-valued non-monotonic formalism and generalized disjunctive well-founded semantics

of disjunctive logic programs. Our 3-valued formalism of non-monotonic reasoning is based

directly on the set of models (2-valued) of the theory. In particular we are studying the

relationship between MDE and THREE(S), where S is the set of all models of prioritized cir-

cumscription, CIRC2(P; So > ... > Ss), where {S,}J<6 is the dynamic stratification based

on the generalized disjunctive well-founded semantics.

Acknowledgements

We wish to express our appreciation to the National Science Foundation for their support

of our work under grant number IRI-86-09170 and the Army Research Office under grant

number DAAG-29-85-K-0-177.

References

[BLM89] C. Baral, J. Lobo, and J. Minker. Generalized well-founded semantics for logic

programs. Technical Report CS-TR-2330, Dept of Computer Science, University

of Maryland, College Park Md 20742, 1989. To be presented in CADE 90.

46

[GL881 M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.

In R.A. Kowalski and K.A. Bowen, editors, Proc. 5 'h International Conference and

Symposium on Logic Programming, pages 1070-1080, Seattle, Washington, August

15-19, 1988.

[KK71J R. A. Kowalski and D. Kuehner. Linear Resolution with Selection Function. Ar-

tificial Intelligence, 2:227-260, 1971.

[Llo84] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

[LRM88] J. Lobo, A. Rajasekar, and J. Minker. Weak Completion Theory for Non-Horn

Programs. In R.A. Kowalski and K.A. Bowen, editors, Proc. 5tA International

Conference and Symposium on Logic Programming, pages 828-842, Seattle, Wash-

ington, August 15-19, 1988.

[Min82] J. Minker. On Indefinite Databases and the Closed World Assumption. In Lecture

Notes in Computer Science 138, pages 292-308. Springer-Verlag, 1982.

[MR88) J. Minker and A. Rajasekar. Procedural Interpretation of Non-Horn Logic Pro-

grams. In E. Lusk and R. Overbeek, editors, Proc. 9th International Conference

on Automated Deduction, pages 278-293, Argonne, IL, May 23-26, 1988.

[MR90] J. Minker and A. Rajasekar. A Fixpoint Semantics for Disjunctive Logic Programs,

1990. To appear in Journal of Logic Programming.

[MRL] J. Minker, A. Rajasekar, and J. Lobo. Theory of Disjunctive Logic Programs.

Submitted.

[MZ82 J. Minker and G. Zanon. An Extension to Linear Resolutionwith Selection Func-

tion. Information Processing Letters, 14(3):191-194, June 1982.

(PP881 H. Przymusinska and T. Przymusinski. Weakly Perfect Model Semantics for Logic

Programs. In R.A. Kowalski and K.A. Bowen, editors, Proc. 5 International Con-

ference and Symposium on Logic Programming, pages 1106-1120, Seattle, Wash-

ington, August 15-19, 1988.

47

[Prz] T. Przymusinski. Stationary semantics for disjunctive logic programs. In prepara-

tion.

[Prz88a] T. Przymusinski. On the Relationship Between Logic Programming and Non-

Monotonic Reasoning. In Proc. AAAI-88, pages 444-448, 1988.

[Prz88b] T.C. Przymusinski. Non-monotonic Reasoning vs. Logic Programming - A New

Perspective. In Y. Wilks and D. Partridge, editors, Handbook on the Formal Foun-

dations of AL 1988.

(Prz88c] T.C. Przymusinski. On the Declarative Semantics of Deductive Databases and

Logic Programming. In J. Minker, editor, Foundations of Deductive Databases

and Logic Programming. Morgan Kaufmann Pub., Washington, D.C., 1988.

[Prz89a] T. Przymusinski. Three-valued Formalizations of Non-monotonic Reasoning and

Logic programming. In Proceedings of First International Conference on Knowl-

edge Representation and Reasoning, 1989.

fPrz89b] T.C. Przymusinski. Every Logic Program has a Natural Stratification and an

Iterated Fixed Point Model. In "Proceedings of the 8th ACM SIGACT-SIGMOD-

SIGART Symposium on Principle of Database Systems", pages 11-21, 1989.

[RM88] A. Rajasekar and J. Minker. On Stratified Disjunctive Programs. Technical Report

CS-TR-2168 UMIACS-TR-88-99, Denartment of Computer Science, University of

Maryland, College Park, December 1988. To appear in the Journal of Logic Pro-

gramning.

[Ros] K. Ross. Well-founded semantics for disjunctive logic programs. to appear in

International Conference on Deductive and Object Oriented Databases, Kyoto.

[She881 J.C. Shepherdson. Negation in Logic Programming. In J. Minker, editor, Founda-

tions of Deductive Databases and Logic Programming, pages 19-88. Morgan Kauf-

man Pub., 1988.

48

[VRS88] A. Van Gelder, K. Ross, and J.S. Schlipf. Unfounded Sets and Well-founded

Semantics for General Logic Programs. In Proc. 7I Symposium on Principles of

Database Systems, pages 221-230, 1988.

[YH85] A. Yahya and L.J. Henschen. Deduction in Non-Horn Databases. J. Au tomated

Reasoning, 1(2):141-160, 1985.

49

